pyvttbl.stats
API¶
Description¶
pyvttbl.stats
contains a collection of classes for
data conducting descriptive and inferential analyses.
Statistics Classes¶
- class pyvttbl.stats.Anova(*args, **kwds)¶
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._anova', '__init__': <function Anova.__init__>, 'run': <function Anova.run>, '_between': <function Anova._between>, '_mixed': <function Anova._mixed>, '_within': <function Anova._within>, '_num2binvec': <function Anova._num2binvec>, '_between_html': <function Anova._between_html>, '_mixed_html': <function Anova._mixed_html>, '_within_html': <function Anova._within_html>, '_summary_html': <function Anova._summary_html>, '__str__': <function Anova.__str__>, '_between_str': <function Anova._between_str>, '_mixed_str': <function Anova._mixed_str>, '_within_str': <function Anova._within_str>, '_summary_str': <function Anova._summary_str>, 'plot': <function Anova.plot>, '__repr__': <function Anova.__repr__>, '__doc__': None, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._anova'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- _between()¶
- _between_html(html)¶
- _between_str()¶
- _mixed()¶
- _mixed_html(html)¶
- _mixed_str()¶
- _num2binvec(d, p=0)¶
Sub-function to code all main effects/interactions
- _summary_html(html, factors)¶
- _summary_str(factors)¶
- _within()¶
- _within_html(html)¶
- _within_str()¶
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- plot(val, xaxis, seplines=None, sepxplots=None, sepyplots=None, xmin='AUTO', xmax='AUTO', ymin='AUTO', ymax='AUTO', fname=None, quality='low', errorbars='ci', output_dir='')¶
This functions is basically wraps the plot function from the dataframe module. It attempts to find the appropriate error bar term. Creats a filename if necessary and calls plot.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(dataframe, dv, wfactors=None, bfactors=None, sub='SUBJECT', measure='', transform='', alpha=0.05)¶
Fancy linear algebra is adapted from a matlab script by R.Henson, 17/3/03 rik.henson@mrc-cbu.cam.ac.uk http://www.mrc-cbu.cam.ac.uk/people/rik.henson/personal/repanova.m
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Anova1way(*args, **kwds)¶
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._anova1way', '__init__': <function Anova1way.__init__>, 'run': <function Anova1way.run>, '_tukey': <function Anova1way._tukey>, '_snk': <function Anova1way._snk>, '__str__': <function Anova1way.__str__>, '__repr__': <function Anova1way.__repr__>, '__doc__': None, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._anova1way'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- _snk()¶
- _tukey()¶
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(list_of_lists, val='Measure', factor='Factor', conditions_list=None, posthoc='tukey', alpha=0.05)¶
performs a one way analysis of variance on the data in list_of_lists. Each sub-list is treated as a group. factor is a label for the independent variable and conditions_list is a list of labels for the different treatment groups.
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.ChiSquare1way(*args, **kwds)¶
1-way Chi-Square Test
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._chisquare1way', '__doc__': '1-way Chi-Square Test', '__init__': <function ChiSquare1way.__init__>, 'run': <function ChiSquare1way.run>, '__str__': <function ChiSquare1way.__str__>, '__repr__': <function ChiSquare1way.__repr__>, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._chisquare1way'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(observed, expected=None, conditions_list=None, measure='Measure', alpha=0.05)¶
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.ChiSquare2way(*args, **kwds)¶
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._chisquare2way', '__init__': <function ChiSquare2way.__init__>, 'run': <function ChiSquare2way.run>, '__str__': <function ChiSquare2way.__str__>, '__repr__': <function ChiSquare2way.__repr__>, '__doc__': None, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._chisquare2way'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Returns human readable string representation of ChiSquare2way
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(row_factor, col_factor, alpha=0.05)¶
runs a 2-way chi square on the matched data in row_factor and col_factor.
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Correlation(*args, **kwds)¶
bivariate correlation matrix
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._correlation', '__doc__': 'bivariate correlation matrix', '__init__': <function Correlation.__init__>, 'run': <function Correlation.run>, 'lm_significance_testing': <function Correlation.lm_significance_testing>, '__str__': <function Correlation.__str__>, '__repr__': <function Correlation.__repr__>, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._correlation'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- lm_significance_testing()¶
Performs Larzelere and Mulaik Significance Testing on the paired correlations in self.
The testing follows a stepdown procedure similiar to the Holm for multiple comparisons. The absolute r values are are arranged in decreasing order and the significant alpha level is adjusted according to alpha/(k-i+1) where k is the total number of tests and i the current pair.
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(list_of_lists, conditions_list=None, coefficient='pearson', alpha=0.05)¶
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Descriptives(*args, **kwds)¶
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._descriptives', '__init__': <function Descriptives.__init__>, 'run': <function Descriptives.run>, '__str__': <function Descriptives.__str__>, '__repr__': <function Descriptives.__repr__>, '__doc__': None, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._descriptives'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
A Python friendly representation of the analysis
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
A human friendly representation of the analysis
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(V, cname=None)¶
Conducts a descriptive statistical analysis of the data in V
- args:
V: an iterable containing numerical data
- kwds:
cname: a string to label the data
- returns:
None
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Histogram(*args, **kwds)¶
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._histogram', '__init__': <function Histogram.__init__>, 'run': <function Histogram.run>, '__str__': <function Histogram.__str__>, '__repr__': <function Histogram.__repr__>, '__doc__': None, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._histogram'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(V, cname=None, bins=10, range=None, density=False, cumulative=False)¶
generates and stores histogram data for numerical data in V
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Marginals(*args, **kwds)¶
Calculates means, counts, standard errors, and confidence intervals for the marginal conditions of the factorial combinations specified in the factors list.
- args:
key: column label (of the dependent variable)
- kwds:
factors: list of column labels to segregate data
where: criterion to apply to table before running analysis
- returns:
a
pyvttbl.stats
.Marginals
object
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._marginals', '__doc__': '\n Calculates means, counts, standard errors, and confidence intervals\n for the marginal conditions of the factorial combinations specified in\n the factors list.\n\n args:\n key: column label (of the dependent variable)\n\n kwds:\n factors: list of column labels to segregate data\n\n where: criterion to apply to table before running analysis\n\n returns:\n a :mod:`pyvttbl.stats`. :class:`Marginals` object\n ', '__init__': <function Marginals.__init__>, 'run': <function Marginals.run>, '__str__': <function Marginals.__str__>, '__repr__': <function Marginals.__repr__>, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._marginals'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Returns human readable string representaition of Marginals
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(df, val, factors, where=None)¶
generates and stores marginal data from the DataFrame df and column labels in factors.
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class pyvttbl.stats.Ttest(*args, **kwds)¶
Student’s t-test
- __class_getitem__()¶
See PEP 585
- __contains__(key, /)¶
True if the dictionary has the specified key, else False.
- __delitem__(key, /)¶
Delete self[key].
- __dict__ = mappingproxy({'__module__': 'pyvttbl.stats._ttest', '__doc__': "Student's t-test", '__init__': <function Ttest.__init__>, 'run': <function Ttest.run>, '__str__': <function Ttest.__str__>, '__repr__': <function Ttest.__repr__>, '__annotations__': {}})¶
- __eq__(value, /)¶
Return self==value.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __getitem__()¶
x.__getitem__(y) <==> x[y]
- __gt__(value, /)¶
Return self>value.
- __hash__ = None¶
- __init__(*args, **kwds)¶
- __ior__(value, /)¶
Return self|=value.
- __iter__()¶
Implement iter(self).
- __le__(value, /)¶
Return self<=value.
- __len__()¶
Return len(self).
- __lt__(value, /)¶
Return self<value.
- __module__ = 'pyvttbl.stats._ttest'¶
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __or__(value, /)¶
Return self|value.
- __reduce__()¶
Return state information for pickling
- __repr__()¶
Return repr(self).
- __reversed__() <==> reversed(od)¶
- __ror__(value, /)¶
Return value|self.
- __setitem__(key, value, /)¶
Set self[key] to value.
- __sizeof__() size of D in memory, in bytes ¶
- __str__()¶
Return str(self).
- clear() None. Remove all items from od. ¶
- copy() a shallow copy of od ¶
- fromkeys(value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- run(A, B=None, pop_mean=None, paired=False, equal_variance=True, alpha=0.05, aname=None, bname=None)¶
Compares the data in A to the data in B. If A or B are multidimensional they are flattened before testing.
When paired is True, the equal_variance parameter has no effect, an exception is raised if A and B are not of equal length.
t =
- rac{overline{X}_D - mu_0}{s_D/sqrt{n}}
- where:
overline{X}_D is the difference of the averages s_D is the standard deviation of the differences
mathrm{d.f.} = n_1 - 1
- When paired is False and equal_variance is True.
t =
rac{ar {X}_1 - ar{X}_2}{S_{X_1X_2} cdot sqrt{ rac{1}{n_1}+ rac{1}{n_2}}}
where: {S_{X_1X_2} is the pooled standard deviation computed as:
S_{X_1X_2} = sqrt{
rac{(n_1-1)S_{X_1}^2+(n_2-1)S_{X_2}^2}{n_1+n_2-2}}
mathrm{d.f.} = n_1 + n_2 - 2
- When paired is False and equal_variance is False.
t = {overline{X}_1 - overline{X}_2 over s_{overline{X}_1 - overline{X}_2}} where:
s_{overline{X}_1 - overline{X}_2} = sqrt{{s_1^2 over n_1} + {s_2^2 over n_2}} where: s_1^2 and s_2^2 are the unbiased variance estimates
mathrm{d.f.} =
rac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)}
- setdefault(key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶