pyvttbl.plotting API

Description

pyvttbl.plotting contains a collection of functions for visualizing data in DataFrame objects.

Static Plotting Methods

Methods to get data into a DataFrame, manipulate and manage data, and write data.


plotting.box_plot(val, factors=None, where=None, fname=None, output_dir='', quality='medium')

Makes a box plot

args:
df:

a pyvttbl.DataFrame object

val:

the label of the dependent variable

kwds:
factors:

a list of factors to include in boxplot

where:

a string, list of strings, or list of tuples applied to the DataFrame before plotting

fname:

output file name

quality:

{‘low’ | ‘medium’ | ‘high’} specifies image file dpi


plotting.histogram_plot(val, where=None, bins=10, range=None, density=False, cumulative=False, fname=None, output_dir='', quality='medium')

Makes a histogram plot

args:

key: column label of dependent variable

kwds:

where: criterion to apply to table before running analysis

bins: number of bins (default = 10)

range: list of length 2 defining min and max bin edges


plotting.interaction_plot(val, xaxis, seplines=None, sepxplots=None, sepyplots=None, xmin='AUTO', xmax='AUTO', ymin='AUTO', ymax='AUTO', where=None, fname=None, output_dir='', quality='low', yerr=None)

makes an interaction plot

args:
df:

a pyvttbl.DataFrame object

val:

the label of the dependent variable

xaxis:

the label of the variable to place on the xaxis of each subplot

kwds:
seplines:

label specifying seperate lines in each subplot

sepxplots:

label specifying seperate horizontal subplots

sepyplots:

label specifying separate vertical subplots

xmin:

(‘AUTO’ by default) minimum xaxis value across subplots

xmax:

(‘AUTO’ by default) maximum xaxis value across subplots

ymin:

(‘AUTO’ by default) minimum yaxis value across subplots

ymax:

(‘AUTO’ by default) maximum yaxis value across subplots

where:

a string, list of strings, or list of tuples applied to the DataFrame before plotting

fname:

output file name

quality:

{‘low’ | ‘medium’ | ‘high’} specifies image file dpi

yerr:

{float, ‘ci’, ‘stdev’, ‘sem’} designates errorbars across datapoints in all subplots


plotting.scatter_matrix(variables, alpha=0.5, grid=False, diagonal=None, trend='linear', alternate_labels=True, fname=None, output_dir='', quality='medium', **kwds)

Plots a matrix of scatterplots

args:
variables:

column labels to include in scatter matrix

kwds:
alpha:

amount of transparency applied

grid:

setting this to True will show the grid

diagonal:

‘kde’: Kernel Density Estimation

‘hist’: 20 bin Histogram

None: just labels

trend :

None: no model fitting

‘linear’: f(x) = a + b*x (default)

‘exponential’: f(x) = a * x**b

‘logarithmic’: f(x) = a * log(x) + b

‘polynomial’: f(x) = a * x**2 + b*x + c

‘power’: f(x) = a * x**b

alternate_labels: Specifies whether the labels and ticks should

alternate. Default is True. When False tick labels will be on the left and botttom, and variable labels will be on the top and right.


plotting.scatter_plot(aname, bname, where=None, trend=None, fname=None, output_dir='', quality='medium', alpha=0.6)

Creates a scatter plot with the specified parameters

args:

aname: variable on x-axis

bname: variable on y-axis

kwds:
alpha:

amount of transparency applied

trend :

None: no model fitting

‘linear’: f(x) = a + b*x

‘exponential’: f(x) = a * x**b

‘logarithmic’: f(x) = a * log(x) + b

‘polynomial’: f(x) = a * x**2 + b*x + c

‘power’: f(x) = a * x**b