Descriptives ============================================== This class calculates, reports, and stores summary statistics. Using class directly ------------------------- Here we examine data sampled from a normal distribution with a mean of 0 and a standard deviation of 1. :: >>> from pyvttbl.stats import Descriptives >>> from random import normalvariate >>> desc = Descriptives() >>> desc.run([normalvariate(mu=0,sigma=1) for i in xrange(1000)]) >>> print(desc) Descriptive Statistics ========================== count 1000.000 mean 0.025 mode -0.182 var 0.934 stdev 0.967 sem 0.031 rms 0.966 min -2.863 Q1 -0.589 median 0.004 Q3 0.681 max 3.467 range 6.330 95ci_lower -0.035 95ci_upper 0.085 :class:`Descriptives` objects inherent :mod:`collections`. :class:`OrderedDict` :: >>> desc Descriptives([('count', 1000.0), ('mean', 0.025036481568892106), ('mode', -0.18188273915666869), ('var', 0.93438245182138646), ('stdev', 0.9666346009849774), ('sem', 0.030567670042405695), ('rms', 0.9664755013857896), ('min', -2.8632575029784033), ('Q1', -0.58880378505312103), ('median', 0.0040778734181358472), ('Q3', 0.68105047745497083), ('max', 3.4671371053896305), ('range', 6.3303946083680334), ('95ci_lower', -0.034876151714223057), ('95ci_upper', 0.084949114852007263)], cname='') This means data can be accessed as if the descriptive statistics were stored in a dict. :: >>> desc['var'] 0.93438245182138646 >>> Using DataFrame wrapper ------------------------- :: >>> df = DataFrame() >>> df.read_tbl('data/error~subjectXtimeofdayXcourseXmodel_MISSING.csv') >>> desc = df.descriptives('ERROR') >>> print(desc) Descriptive Statistics ERROR ========================== count 48.000 mean 3.896 mode 3.000 var 5.797 stdev 2.408 sem 0.348 rms 4.567 min 0.000 Q1 2.000 median 3.000 Q3 5.000 max 10.000 range 10.000 95ci_lower 3.215 95ci_upper 4.577