ChiSquare2way¶
ChiSquare2way
conducts a two-sample chi-squared test on a list of frequencies.
A 2 x 2 example¶
ChiSquare2way
needs the data in a DataFrame
with one
observation per row. Once it is in a DataFrame
the user just has to
specify the row factor and the column factor.
In this example we use a collections
. Counter
object
to build the DataFrame from frequency counts.
>>> from pyvttbl import DataFrame
>>> from collection import Counter
>>> df=DataFrame()
>>> df['FAULTS'] = list(Counter(Low=177,High=181).elements())
>>> df['FAULTS'] = df['FAULTS'][::-1] # reverse 'FAULT' data
>>> df['VERDICT'] = list(Counter(Guilty=153, NotGuilty=24).elements()) + \
list(Counter(Guilty=105, NotGuilty=76).elements())
>>> x2= df.chisquare2way('FAULTS','VERDICT')
>>> print(x2)
Chi-Square: two Factor
SUMMARY
Guilty NotGuilty Total
=====================================
High 105 76 181
(130.441) (50.559)
Low 153 24 177
(127.559) (49.441)
=====================================
Total 258 100 358
SYMMETRIC MEASURES
Value Approx.
Sig.
===========================================
Cramer's V 0.317 8.686e-10
Contingency Coefficient 0.302 5.510e-09
N of Valid Cases 358
CHI-SQUARE TESTS
Value df P
===============================================
Pearson Chi-Square 35.930 1 2.053e-09
Continuity Correction 34.532 1 4.201e-09
Likelihood Ratio 37.351 1 0
N of Valid Cases 358
CHI-SQUARE POST-HOC POWER
Measure
==============================
Effect size w 0.317
Non-centrality lambda 35.930
Critical Chi-Square 3.841
Power 1.000
A 2 x 3 example¶
Here a different approach is taken to get the data into the DataFrame
>>> df=DataFrame()
>>> rfactors= ['Countrol']*903 + ['Message']*869
>>> cfactors= ['Trash Can']*41 + ['Litter']*385 + ['Removed']*477
>>> cfactors+=['Trash Can']*80 + ['Litter']*290 + ['Removed']*499
>>> x2= ChiSquare2way()
>>> x2.run(rfactors, cfactors)
>>> print(x2)
Chi-Square: two Factor
SUMMARY
Litter Removed Trash Can Total
====================================================
Countrol 385 477 41 903
(343.976) (497.363) (61.661)
Message 290 499 80 869
(331.024) (478.637) (59.339)
====================================================
Total 675 976 121 1772
SYMMETRIC MEASURES
Value Approx.
Sig.
===========================================
Cramer's V 0.121 3.510e-07
Contingency Coefficient 0.120 4.263e-07
N of Valid Cases 1772
CHI-SQUARE TESTS
Value df P
============================================
Pearson Chi-Square 25.794 2 2.506e-06
Likelihood Ratio 26.056 2 2.198e-06
N of Valid Cases 1772
CHI-SQUARE POST-HOC POWER
Measure
==============================
Effect size w 0.121
Non-centrality lambda 25.794
Critical Chi-Square 5.991
Power 0.997